Spell checking is the process of finding misspelled words and possibly correcting them. Most of the modern commercial spell checkers use a straightforward approach to finding misspellings, which considered a word is erroneous when it is not found in the dictionary. However, this approach is not able to check the correctness of words in their context and this is called real-word spelling error. To solve this issue, in the state-of-the-art researchers use context feature at fixed size n-gram (i.e. tri-gram) and this reduces the effectiveness of model due to limited feature. In this paper, we address the problem of this issue by adopting sentence level n-gram feature for real-word spelling error detection and correction. In this technique, all...