Single image rain-streak removal is an extremely challenging problem due to the presence of non-uniform rain densities in images. Previous works solve this problem using various hand-designed priors or by explicitly mapping synthetic rain to paired clean image in a supervised way. In practice, however, the pre-defined priors are easily violated and the paired training data are hard to collect. To overcome these limitations, in this work, we propose RainRemoval-GAN (RRGAN), the first end-to-end adversarial model that generates realistic rain-free images using only unpaired supervision. Our approach alleviates the paired training constraints by introducing a physical-model which explicitly learns a recovered images and corresponding rain-stre...