Data stream management systems (DSMSs) are scalable, highly available, and fault-tolerant systems that aggregate and analyze real-time data in motion. To continuously perform analytics on the fly within the stream, state-of-the-art DSMSs host streaming applications as a set of interconnected operators, with each operator encapsulating the semantic of a specific operation. For parallel execution on a particular platform, these operators need to be appropriately replicated in multiple instances that split and process the workload simultaneously. Because the way operators are partitioned affects the resulting performance of streaming applications, it is essential for DSMSs to have a method to compare different operators and make holistic repli...