We calculate the spectral dimension for a nonperturbative lattice approach to quantum gravity, known as causal dynamical triangulations (CDT), showing that the dimension of spacetime smoothly decreases from ∼ 4 on large distance scales to ∼ 3/2 on small distance scales. This novel result may provide a possible resolution to a long-standing argument against the asymptotic safety scenario. A method for determining the relative lattice spacing within the physical phase of the CDT parameter space is also outlined, which might prove useful when studying renormalization group flow in models of lattice quantum gravity