The fractional level models are (logarithmic) conformal field theories associated with affine Kac–Moody (super)algebras at certain levels k∈Q . They are particularly noteworthy because of several longstanding difficulties that have only recently been resolved. Here, Wakimoto's free field realisation is combined with the theory of Jack symmetric functions to analyse the fractional level slˆ(2) models. The first main results are explicit formulae for the singular vectors of minimal grade in relaxed Wakimoto modules. These are closely related to the minimal grade singular vectors in relaxed (parabolic) Verma modules. Further results include an explicit presentation of Zhu's algebra and an elegant new proof of the classification of simple relax...