141 pagesInternational audienceMilliken's tree theorem is a deep result in combinatorics that generalizes a vast number of other results in the subject, most notably Ramsey's theorem and its many variants and consequences. Motivated by a question of Dobrinen, we initiate the study of Milliken's tree theorem from the point of view of computability theory. Our advance here stems from a careful analysis of the Halpern-La\"{u}chli theorem which shows that it can be carried out effectively (i.e., that it is computably true). We use this as the basis of a new inductive proof of Milliken's tree theorem that permits us to gauge its effectivity in turn. The principal outcome of this is a comprehensive classification of the computable content of Mill...