Dans cette thèse, nous étudions l'adaptation des Programmes Génétiques (GP) pour surmonter l'obstacle du volume de données dans les problèmes Big Data. GP est une méta‐heuristique qui a fait ses preuves pour les problèmes de classification. Néanmoins, son coût de calcul est un frein à son utilisation avec les larges bases d’apprentissage. Tout d'abord, nous effectuons une revue approfondie enrichie par une étude comparative expérimentale des algorithmes d'échantillonnage utilisés avec GP. Puis, à partir des résultats de l'étude précédente, nous proposons quelques extensions basées sur l'échantillonnage hiérarchique. Ce dernier combine des algorithmes d'échantillonnage actif à plusieurs niveaux et s’est prouvé une solution appropriée pour me...
Fitness functions based on test cases are very common in Genetic Programming (GP). This process can ...
Genotyping is becoming cheaper, making genotype data available for millions of indi-viduals. Moreove...
Genetic Programming is a type of biological inspired machine learning. It is composed of a populatio...
In this thesis, we investigate the adaptation of GP to overcome the data Volume hurdle in Big Data p...
Extract knowledge and significant information from very large data sets is a main topic in Data Scie...
International audienceWith the growing number of available databases having a very large number of r...
Analysing large-scale data brings promises of new levels of scientific discovery and economic value....
Evolutionary algorithms are one category of optimization techniques that are inspired by processes o...
Centre for Intelligent Systems and their Applicationsstudentship 9314680This thesis is an investigat...
in Advances in Intelligent Systems and Computing, vol. 529The amount of available data for data mini...
La programmation génétique (GP) est une hyperheuristique d’optimisation ayant été appliquée avec suc...
Dans le cadre de cette thèse, nous nous intéresseons à l'amélioration des techniques de programmatio...
In classification,machine learning algorithms can suffer a performance bias when data sets are unbal...
Genetic Programming (GP) is afflicted by an excessive computation time that is more exacerbated with...
In classification,machine learning algorithms can suffer a performance bias when data sets are unbal...
Fitness functions based on test cases are very common in Genetic Programming (GP). This process can ...
Genotyping is becoming cheaper, making genotype data available for millions of indi-viduals. Moreove...
Genetic Programming is a type of biological inspired machine learning. It is composed of a populatio...
In this thesis, we investigate the adaptation of GP to overcome the data Volume hurdle in Big Data p...
Extract knowledge and significant information from very large data sets is a main topic in Data Scie...
International audienceWith the growing number of available databases having a very large number of r...
Analysing large-scale data brings promises of new levels of scientific discovery and economic value....
Evolutionary algorithms are one category of optimization techniques that are inspired by processes o...
Centre for Intelligent Systems and their Applicationsstudentship 9314680This thesis is an investigat...
in Advances in Intelligent Systems and Computing, vol. 529The amount of available data for data mini...
La programmation génétique (GP) est une hyperheuristique d’optimisation ayant été appliquée avec suc...
Dans le cadre de cette thèse, nous nous intéresseons à l'amélioration des techniques de programmatio...
In classification,machine learning algorithms can suffer a performance bias when data sets are unbal...
Genetic Programming (GP) is afflicted by an excessive computation time that is more exacerbated with...
In classification,machine learning algorithms can suffer a performance bias when data sets are unbal...
Fitness functions based on test cases are very common in Genetic Programming (GP). This process can ...
Genotyping is becoming cheaper, making genotype data available for millions of indi-viduals. Moreove...
Genetic Programming is a type of biological inspired machine learning. It is composed of a populatio...