Cette thèse traite de problèmes discrets d'optimisation convexe et s'intéresse à des estimations de leurs taux de convergence. Elle s'organise en deux parties indépendantes.Dans la première partie, nous étudions le taux de convergence de l'algorithme de Sinkhorn et de certaines de ses variantes. Cet algorithme apparaît dans le cadre du Transport Optimal (TO) par l'intermédiaire d'une régularisation entropique. Ses itérations, comme celles de ses variantes, s'écrivent sous la forme de produits composante par composante de matrices et de vecteurs positifs. Pour les étudier, nous proposons une nouvelle approche basée sur des inégalités de convexité simples et menant au taux de convergence linéaire observé en pratique. Nous étendons ce résultat...