Ordinary differential equations (ODEs) are widespread in many natural sciences including chemistry, ecology, and systems biology, and in disciplines such as control theory and electrical engineering. Building on the celebrated molecules-as-processes paradigm, they have become increasingly popular in computer science, with high-level languages and formal methods such as Petri nets, process algebra, and rule-based systems that are interpreted as ODEs. We consider the problem of comparing and minimizing ODEs automatically. Influenced by traditional approaches in the theory of programming, we propose differential equivalence relations. We study them for a basic intermediate language, for which we have decidability results, that can be targeted ...