Let $A$ be a semiabelian variety over an algebraically closed field of arbitrary characteristic, endowed with a finite morphism $\psi: A\to A$. In this paper, we give an essentially complete classification of all $\psi$-invariant subvarieties of $A$. For example, under some mild assumptions on $(A,\psi)$ we prove that every $\psi$-invariant subvariety is a finite union of translates of semiabelian subvarieties. This result is then used to prove the Manin-Mumford conjecture in arbitrary characteristic and in full generality. Previously, it had been known only for the group of torsion points of order prime to the characteristic of $K$. The proofs involve only algebraic geometry, though scheme theory and some arithmetic arguments cannot be avo...
We prove that in positive characteristic, the Manin–Mumford conjecture implies the Mordell–Lang conj...
We give a new proof of the Mordell-Lang conjecture in positive characteristic, in the situation wher...
We prove that in positive characteristic, the Manin–Mumford conjecture implies the Mordell–Lang conj...
Let $A$ be a semiabelian variety over an algebraically closed field of arbitrary characteristic, end...
Abstract. We present the details of a model theoretic proof of an analogue of the Manin-Mumford conj...
Abstract. We present the details of a model theoretic proof of an analogue of the Manin-Mumford conj...
Abstract. We present a new proof of the Manin-Mumford conjecture about torsion points on algebraic s...
We present a new proof of the Manin-Mumford conjecture about torsion points on algebraic subvarietie...
By means of the theory of strongly semistable sheaves and the theory of the Greenberg transform, we ...
Abstract. We prove versions of the Mordell-Lang conjecture for semiabelian varieties defined over fi...
Let be an algebraically closed field of prime characteristic, let be a semiabelian variety defined o...
A theorem of Green, Lazarsfeld and Simpson (formerly a conjecture of Beauville and Catanese) states ...
A theorem of Green, Lazarsfeld and Simpson (formerly a conjecture of Beauville and Catanese) states ...
The Mordell-Lang conjecture (proven by Faltings, Vojta and Mc- Quillan) states that the intersection...
We give a new proof of the Mordell–Lang conjecture in positive characteristic, in the situation wher...
We prove that in positive characteristic, the Manin–Mumford conjecture implies the Mordell–Lang conj...
We give a new proof of the Mordell-Lang conjecture in positive characteristic, in the situation wher...
We prove that in positive characteristic, the Manin–Mumford conjecture implies the Mordell–Lang conj...
Let $A$ be a semiabelian variety over an algebraically closed field of arbitrary characteristic, end...
Abstract. We present the details of a model theoretic proof of an analogue of the Manin-Mumford conj...
Abstract. We present the details of a model theoretic proof of an analogue of the Manin-Mumford conj...
Abstract. We present a new proof of the Manin-Mumford conjecture about torsion points on algebraic s...
We present a new proof of the Manin-Mumford conjecture about torsion points on algebraic subvarietie...
By means of the theory of strongly semistable sheaves and the theory of the Greenberg transform, we ...
Abstract. We prove versions of the Mordell-Lang conjecture for semiabelian varieties defined over fi...
Let be an algebraically closed field of prime characteristic, let be a semiabelian variety defined o...
A theorem of Green, Lazarsfeld and Simpson (formerly a conjecture of Beauville and Catanese) states ...
A theorem of Green, Lazarsfeld and Simpson (formerly a conjecture of Beauville and Catanese) states ...
The Mordell-Lang conjecture (proven by Faltings, Vojta and Mc- Quillan) states that the intersection...
We give a new proof of the Mordell–Lang conjecture in positive characteristic, in the situation wher...
We prove that in positive characteristic, the Manin–Mumford conjecture implies the Mordell–Lang conj...
We give a new proof of the Mordell-Lang conjecture in positive characteristic, in the situation wher...
We prove that in positive characteristic, the Manin–Mumford conjecture implies the Mordell–Lang conj...