abstract of talkProbabilistic logic programs combine the power of a programming language with a possible world semantics; they are typically based on Sato's distribution semantics [5] and they have been studied for over twenty years now. They have recently been extended towards defining continuous distributions and dynamics, which enables their use in robotics and perception [1]. The talk shall briefly introduce these formalisms and then present some progress on synthesising such probabilistic programs from examples, both in the discrete and the continuous case. For the discrete case, I shall report on our results in applying ProbFOIL [5] to the problem of machine reading in CMU's Never Ending Language Learning system. ProbFOIL is an exten...