We consider the implications of the mathematical modeling and analysis of large modular neuron-to-neuron dynamical networks. We explain how the dynamical behavior of relatively small-scale strongly connected networks leads naturally to nonbinary information processing and thus to multiple hypothesis decision-making, even at the very lowest level of the brain’s architecture. In turn we build on these ideas to address some aspects of the hard problem of consciousness. These include how feelings might arise within an architecture with a foundational decision-making and classification layer of unit processors. We discuss how a proposed “dual hierarchy model,” made up from both externally perceived, physical elements of increasing complexity, an...