This research program was conducted to study the formation of a stress wave resulting from the detonation of an explosive charge in a circular hole in a large thin plate. Dynamic photoelasticity methods were employed. The isochromatic-fringe patterns were recorded with a Cranz-Schardin multiple-spark camera operating at a framing rate of 500,000 exposures/second. Experimental procedures developed during the course of the investigation eliminated fracturing of the model in the vicinity of the explosive and permitted recording of the dynamic fringe patterns at the boundary of the hole during the entire period of loading. Results of the study provide a realistic pulse shape for use with theoretical solutions to wave-propagation problems when c...