Dans un problème de prédiction à multiples pas discrets, la prédiction à chaque instant peut dépendre de l’entrée à n’importe quel moment dans un passé lointain. Modéliser une telle dépendance à long terme est un des problèmes fondamentaux en apprentissage automatique. En théorie, les Réseaux de Neurones Récurrents (RNN) peuvent modéliser toute dépendance à long terme. En pratique, puisque la magnitude des gradients peut croître ou décroître exponentiellement avec la durée de la séquence, les RNNs ne peuvent modéliser que les dépendances à court terme. Cette thèse explore ce problème dans les réseaux de neurones récurrents et propose de nouvelles solutions pour celui-ci. Le chapitre 3 explore l’idée d’utiliser une mémoire externe pour st...
Training recurrent neural networks is known to be difficult when time dependencies become long. Cons...
This past year, RNNs have seen a lot of attention as powerful models that are able to decode sequenc...
Recurrent neural networks (RNNs) are particularly well-suited for modeling longterm dependencies in...
Pour être capable d'apprendre et reconnaître des séquences, un agent robotique doit être équipé d'un...
Pour être capable d'apprendre et reconnaître des séquences, un agent robotique doit être équipé d'un...
Recurrent Neural Networks(RNNs) are powerful models that have obtained outstanding achievements in m...
Recurrent Neural Networks (RNNs) are powerful sequence models that were believed to be difficult to ...
Recurrent Neural Networks (RNNs) are powerful sequence models that were believed to be difficult to ...
Continual Learning (CL) is the process of learning new things on top of what has already been learne...
Modelling long-term dependencies is a challenge for recurrent neural networks. This is primarily due...
The effectiveness of recurrent neural networks can be largely influenced by their ability to store ...
The effectiveness of recurrent neural networks can be largely influenced by their ability to store ...
In this chapter, we describe the basic concepts behind the functioning of recurrent neural networks ...
This past year, RNNs have seen a lot of attention as powerful models that are able to decode sequenc...
Le sujet de cette thèse est l'étude d'une classe d'algorithmes d'apprentissage non supervisés pour r...
Training recurrent neural networks is known to be difficult when time dependencies become long. Cons...
This past year, RNNs have seen a lot of attention as powerful models that are able to decode sequenc...
Recurrent neural networks (RNNs) are particularly well-suited for modeling longterm dependencies in...
Pour être capable d'apprendre et reconnaître des séquences, un agent robotique doit être équipé d'un...
Pour être capable d'apprendre et reconnaître des séquences, un agent robotique doit être équipé d'un...
Recurrent Neural Networks(RNNs) are powerful models that have obtained outstanding achievements in m...
Recurrent Neural Networks (RNNs) are powerful sequence models that were believed to be difficult to ...
Recurrent Neural Networks (RNNs) are powerful sequence models that were believed to be difficult to ...
Continual Learning (CL) is the process of learning new things on top of what has already been learne...
Modelling long-term dependencies is a challenge for recurrent neural networks. This is primarily due...
The effectiveness of recurrent neural networks can be largely influenced by their ability to store ...
The effectiveness of recurrent neural networks can be largely influenced by their ability to store ...
In this chapter, we describe the basic concepts behind the functioning of recurrent neural networks ...
This past year, RNNs have seen a lot of attention as powerful models that are able to decode sequenc...
Le sujet de cette thèse est l'étude d'une classe d'algorithmes d'apprentissage non supervisés pour r...
Training recurrent neural networks is known to be difficult when time dependencies become long. Cons...
This past year, RNNs have seen a lot of attention as powerful models that are able to decode sequenc...
Recurrent neural networks (RNNs) are particularly well-suited for modeling longterm dependencies in...