At the turn of the century, David Hilbert, a famous mathematician and leader of the formalist school, was convinced of the existence of an algorithm for establishing the consistency or inconsistency of any mathematical system. Kurt Gödel [2] showed in 1931 that the consistency of any system which included the natural numbers could not be established. This result was a corollary to his more startling "incompleteness theorem" which states that if any formal system which contains the natural numbers is consistent, then that system is necessarily incomplete. More directly, there is a statement P in the system such that neither P nor not-P is a theorem of the system. Since either P or not-P must be true, then there is a true statement in the the...