Van der Waals heterostructures obtained via stacking and twisting have been used to create moiré superlattices, enabling new optical and electronic properties in solid-state systems. Moiré lattices in twisted bilayers of transition metal dichalcogenides (TMDs) result in exciton trapping, host Mott insulating and superconducting states6 and act as unique Hubbard systems whose correlated electronic states can be detected and manipulated optically. Structurally, these twisted heterostructures feature atomic reconstruction and domain formation. However, due to the nanoscale size of moiré domains, the effects of atomic reconstruction on the electronic and excitonic properties have not been systematically investigated. Here we use near-0°-twist-a...