Machine learning algorithms have many applications, both for academic and industrial purposes. Examples of applications are classification of diffraction patterns in materials science and classification of properties in chemical compounds within the pharmaceutical industry. For these algorithms to be successful they need to be optimised, part of this is achieved by training the algorithm, but there are components of the algorithms that cannot be trained. These hyperparameters have to be tuned separately. The focus of this work was optimisation of hyperparameters in classification algorithms based on convolutional neural networks. The purpose of this thesis was to investigate the possibility of using reinforcement learning algorithms, prima...