This work develops new methodologies for analyzing accelerated testing data in the context of a reliability growth program for a complex multi-component system. Each component has multiple failure modes and the growth program consists of multiple test-fix stages with corrective actions applied at the end of each stage. The first group of methods considers time-to-failure data and test covariates for predicting the final reliability of the system. The time-to-failure of each failure mode is assumed to follow a Weibull distribution with rate parameter proportional to an acceleration factor. Acceleration factors are specific to each failure mode and test covariates. We develop a Bayesian methodology to analyze the data by assigning a prior dis...