The importance of noncovalent interactions in the realm of biological materials continues to inspire efforts to create artificial supramolecular polymeric architectures. These types of self-assembled materials hold great promise as environmentally stimuli-responsive materials because they are capable of adjusting their various structural parameters, such as chain length, architecture, conformation, and dynamics, to new surrounding environments upon exposure to appropriate external stimuli. Nevertheless, in spite of considerable advances in the area of responsive materials, it has proved challenging to create synthetic self-assembled materials that respond to highly disparate analytes and whose environmentally induced changes in structure ca...