Timothy Makarios (with Isabelle/HOL1) and John Harrison (with HOL-Light2) shown that “the Klein-Beltrami model of the hyperbolic plane satisfy all of Tarski’s axioms except his Euclidean axiom” [2],[3],[4],[5]. With the Mizar system [1] we use some ideas taken from Tim Makarios’s MSc thesis [10] to formalize some definitions (like the absolute) and lemmas necessary for the verification of the independence of the parallel postulate. In this article we prove that our constructed model (we prefer “Beltrami-Klein” name over “Klein-Beltrami”, which can be seen in the naming convention for Mizar functors, and even MML identifiers) satisfies the congruence symmetry, the congruence equivalence relation, and the congruence identity axioms formula...