La capacidad de analizar bases de datos de alta dimensionalidad es de fundamental importancia en numerosas actividades productivas y áreas del conocimiento en general. Esto es particularmente cierto en la última década, ya que se observa un fuerte aumento en cantidad y la variedad de datos, facilitado por los últimos avances en hardware y software. Un área central en este crecimiento es el Aprendizaje Automático (AA), rama de las Ciencias de la Computación que estudia algoritmos que aprenden a ejecutar determinadas tareas a partir de ejemplos. Dentro del área de AA, es frecuente hacer uso de algoritmos de reducción de dimensionalidad sobre datos con gran cantidad de variables, con el foco en mejorar la capacidad de dichos algoritmos. En est...
This research paper presents the Principal Component Analysis (PCA) technique, and its practical app...
This paper presents and explains several methods of dimensionality reduction of data sets, beginning...
In the wake of the revolution brought by Deep Learning, we believe neural networks can be leveraged ...
[EN] This work focuses on the study of different techniques of dimensionality reduction, in combina...
Las técnicas de reducción de dimensionalidad son importantes en los campos de la ciencia de datos y ...
The use of dimensionality reduction techniques is a keystone for analyzing and interpreting high dim...
The dimensionality reduction methods are algorithms mapping the set of data in subspaces derived fro...
El desarrollo de modelos de aprendizaje automático y su aplicación en la medicina han permitido impo...
Nas últimas décadas, avanços em tecnologias de geração, coleta e armazenamento de dados têm contribu...
AbstractThe field of machine learning deals with a huge amount of various algorithms, which are able...
The visual interpretation of data is an essential step to guide any further processing or decision m...
Machine learning methods are used to build models for classification and regression tasks, among oth...
Dimensionality reduction is the transformation of data from a high-dimensional space into a low-dime...
The story of this work is dimensionality reduction. Dimensionality reduction is a method that takes...
The analysis of the big volumes of data requires efficient and robust dimension reduction techniques...
This research paper presents the Principal Component Analysis (PCA) technique, and its practical app...
This paper presents and explains several methods of dimensionality reduction of data sets, beginning...
In the wake of the revolution brought by Deep Learning, we believe neural networks can be leveraged ...
[EN] This work focuses on the study of different techniques of dimensionality reduction, in combina...
Las técnicas de reducción de dimensionalidad son importantes en los campos de la ciencia de datos y ...
The use of dimensionality reduction techniques is a keystone for analyzing and interpreting high dim...
The dimensionality reduction methods are algorithms mapping the set of data in subspaces derived fro...
El desarrollo de modelos de aprendizaje automático y su aplicación en la medicina han permitido impo...
Nas últimas décadas, avanços em tecnologias de geração, coleta e armazenamento de dados têm contribu...
AbstractThe field of machine learning deals with a huge amount of various algorithms, which are able...
The visual interpretation of data is an essential step to guide any further processing or decision m...
Machine learning methods are used to build models for classification and regression tasks, among oth...
Dimensionality reduction is the transformation of data from a high-dimensional space into a low-dime...
The story of this work is dimensionality reduction. Dimensionality reduction is a method that takes...
The analysis of the big volumes of data requires efficient and robust dimension reduction techniques...
This research paper presents the Principal Component Analysis (PCA) technique, and its practical app...
This paper presents and explains several methods of dimensionality reduction of data sets, beginning...
In the wake of the revolution brought by Deep Learning, we believe neural networks can be leveraged ...