[[abstract]]Data-driven temporal filtering approaches based on a specific optimization technique have been shown to be capable of enhancing the discrimination and robustness of speech features in speech recognition. The filters in these approaches are often obtained with the statistics of the features in the temporal domain. In this paper, we derive new data-driven temporal filters that employ the statistics of the modulation spectra of the speech features. Three new temporal filtering approaches are proposed and based on constrained versions of linear discriminant analysis (LDA), principal component analysis (PCA), and minimum class distance (MCD), respectively. It is shown that these proposed temporal filters can effectively improve the s...