Fault tolerant distance preservers (spanners) are sparse subgraphs that preserve (approximate) distances between given pairs of vertices under edge or vertex failures. So-far, these structures have been studied thoroughly mainly from a centralized viewpoint. Despite the fact fault tolerant preservers are mainly motivated by the error-prone nature of distributed networks, not much is known on the distributed computational aspects of these structures. In this paper, we present distributed algorithms for constructing fault tolerant distance preservers and +2 additive spanners that are resilient to at most two edge faults. Prior to our work, the only non-trivial constructions known were for the single fault and single source setting by [Ghaffa...