We define a new problem in comparative genomics, denoted PQ-Tree Search, that takes as input a PQ-tree T representing the known gene orders of a gene cluster of interest, a gene-to-gene substitution scoring function h, integer parameters d_T and d_S, and a new genome S. The objective is to identify in S approximate new instances of the gene cluster that could vary from the known gene orders by genome rearrangements that are constrained by T, by gene substitutions that are governed by h, and by gene deletions and insertions that are bounded from above by d_T and d_S, respectively. We prove that the PQ-Tree Search problem is NP-hard and propose a parameterized algorithm that solves the optimization variant of PQ-Tree Search in O^*(2^{?}) time...