FPGA System-on-Chips (SoCs) are heterogeneous platforms that combine general-purpose processors with a field-programmable gate array (FPGA) fabric. The FPGA fabric is composed of a programmable logic in which hardware accelerators can be deployed to accelerate the execution of specific functionality. The main source of unpredictability when bounding the execution times of hardware accelerators pertains the access to the shared memories via the on-chip bus. This work is focused on bounding the worst-case bus contention experienced by the hardware accelerators deployed in the FPGA fabric. To this end, this work considers the AMBA AXI bus, which is the de-facto standard communication interface used in most the commercial off-the-shelf (COTS) F...