A new conditional formulation of classical filtering methods is proposed. This formulation is dedicated to image sequence-based tracking. These conditional filters allow solving systems whose measurements and state equation are estimated from the image data. In particular, the model that is considered for point tracking combines a state equation relying on the optical flow constraint and measurements provided by a matching technique. Based on this, two point trackers are derived. The first one is a linear tracker well suited to image sequences exhibiting global-dominant motion. This filter is determined through the use of a new estimator, called the conditional linear minimum variance estimator. The second one is a nonlinear tra...