Canonical correlation analysis (CCA) is a dimension-reduction technique in which two random vectors from high dimensional spaces are reduced to a new pair of low dimensional vectors after applying linear transformations to each of them, retaining as much information as possible. The components of the transformed vectors are called canonical variables. One seeks linear combinations of the original vectors maximizing the correlation subject to the constraint that they are to be uncorrelated with the previous canonical variables within each vector. By these means one actually gets two transformed random vectors of lower dimension whose expected square distance has been minimized subject to have uncorrelated components of unit variance within e...