Boron neutron capture therapy (BNCT) is an emerging radiation treatment modality, exhibiting the potential to selectively destroy cancer cells. Currently, BNCT is conducted using a nuclear reactor. However, the future trend is to move toward an accelerator-based system for use in hospital environments. A typical BNCT radiation field has several different types of radiation. The beam quality should be quantified to accurately determine the dose to be delivered to the target. This study utilized a tissue equivalent proportional counter (TEPC) to measure microdosimetric and macrodosimetric quantities of an accelerator-based neutron source. The micro- and macro-dosimetric quantities measured with the TEPC were compared with those obtained via t...