Distributed key-value stores employ replication for high availability. Yet, they do not always efficiently take advantage of the availability of multiple replicas for each value, and read operations often exhibit high tail latencies. Various replica selection strategies have been proposed to address this problem, together with local request scheduling policies. It is difficult, however, to determine what is the absolute performance gain each of these strategies can achieve. We present a formal framework allowing the systematic study of request scheduling strategies in key-value stores. We contribute a definition of the optimization problem related to reducing tail latency in a replicated key-value store as a minimization problem with respec...