The decomposition of graphs is a prominent algorithmic task with numerous applications in computer science. A graph decomposition method is typically associated with a width parameter (such as treewidth) that indicates how well the given graph can be decomposed. Many hard (even #P-hard) algorithmic problems can be solved efficiently if a decomposition of small width is provided; the runtime, however, typically depends exponentially on the decomposition width. Finding an optimal decomposition is itself an NP-hard task. In this paper we propose, implement, and test the first practical decomposition algorithms for the width parameters tree-cut width and treedepth. These two parameters have recently gained a lot of attention in the theoretical ...