Water-in-salt electrolytes blended with organics solvents, that is, organic solvent/water mixed electrolytes, are promising for applications in next-generation energy storage devices vitally needed for industrial electrification and decarbonization. However, the electrolyte ion diffusion behaviors within nanoporous supercapacitor electrodes are poorly understood. Here a systematic investigation into supercapacitor resistances and ion kinetics is carried out experimentally and with numerical simulations. The electrochemical results on the nanoporous electrodes reveal a nonmonotonic (decreasing, increasing, and then decreasing) trend of supercapacitor resistances with increasing solvent mobility, challenging the long-held views that supercapa...