Color segmentation is an essential problem in image processing. While most of the recent works focus on the segmentation of individual images, we propose to use the temporal color redundancy to segment arbitrary videos. In an initial phase, a k-medoids clustering is applied on histogram peaks observed on few frames to learn the dominant colors composing the recorded scene. In a second phase, these dominant colors are used as reference colors to speed up a color-based segmentation process and, are updated on-the-fly when the scene changes. Our evaluation first shows that the proprieties of k-medoids clustering make it well suited to learn the dominant colors. Then, the efficiency and the effectiveness of the proposed method are demonstrated ...