We give a slight refinement to the process by which estimates for exponential sums are extracted from bounds for Vinogradov’s mean value. Coupling this with the recent works of Wooley, and of Bourgain, Demeter and Guth, providing optimal bounds for the Vinogradov mean value, we produce a powerful new kth derivative estimate. Roughly speaking, this improves the van der Corput estimate for k ≥ 4. Various corollaries are given, showing for example that ζ(σ+)≪ε(1−σ)3/2/2+ε for ≥ 2 and 0 ≤ σ ≤ 1, for any fixed ε > 0
We describe mean value estimates for exponential sums of degree exceeding 2 that approach those conj...
The main purpose of this paper is using the analytic method, A. Weil’s classical work for the upper ...
Abstract. We apply multigrade efficient congruencing to estimate Vino-gradov’s integral of degree k ...
We give a slight refinement to the process by which estimates for exponential sums are extracted fro...
International audienceWe give an overview of van der Corput's method for exponential sums, with a pa...
International audienceWe give an overview of van der Corput's method for exponential sums, with a pa...
International audienceWe give an overview of van der Corput's method for exponential sums, with a pa...
Abstract. We present a hybrid approach to bounding exponential sums over kth powers via Vinogradov’s...
Abstract. Recent progress on Vinogradov’s mean value theorem has resulted in improved estimates for ...
International audienceWe give an upper bound for the exponential sum $\sum_{m=1}^Mexp(2i\pi f(m))$ w...
Abstract. We develop a substantial enhancement of the efficient congru-encing method to estimate Vin...
International audienceWe give an upper bound for the exponential sum $\sum_{m=1}^Mexp(2i\pi f(m))$ w...
On a fundamental result in van der Corput’s method of estimating exponential sums b
We improve the error term in the van der Corput transform for exponential sums, a≤n≤b g(n) exp(2π if...
La méthode analytique développée par van der Corput pour les majorations de sommes d'exponentielles ...
We describe mean value estimates for exponential sums of degree exceeding 2 that approach those conj...
The main purpose of this paper is using the analytic method, A. Weil’s classical work for the upper ...
Abstract. We apply multigrade efficient congruencing to estimate Vino-gradov’s integral of degree k ...
We give a slight refinement to the process by which estimates for exponential sums are extracted fro...
International audienceWe give an overview of van der Corput's method for exponential sums, with a pa...
International audienceWe give an overview of van der Corput's method for exponential sums, with a pa...
International audienceWe give an overview of van der Corput's method for exponential sums, with a pa...
Abstract. We present a hybrid approach to bounding exponential sums over kth powers via Vinogradov’s...
Abstract. Recent progress on Vinogradov’s mean value theorem has resulted in improved estimates for ...
International audienceWe give an upper bound for the exponential sum $\sum_{m=1}^Mexp(2i\pi f(m))$ w...
Abstract. We develop a substantial enhancement of the efficient congru-encing method to estimate Vin...
International audienceWe give an upper bound for the exponential sum $\sum_{m=1}^Mexp(2i\pi f(m))$ w...
On a fundamental result in van der Corput’s method of estimating exponential sums b
We improve the error term in the van der Corput transform for exponential sums, a≤n≤b g(n) exp(2π if...
La méthode analytique développée par van der Corput pour les majorations de sommes d'exponentielles ...
We describe mean value estimates for exponential sums of degree exceeding 2 that approach those conj...
The main purpose of this paper is using the analytic method, A. Weil’s classical work for the upper ...
Abstract. We apply multigrade efficient congruencing to estimate Vino-gradov’s integral of degree k ...