We consider planar upward drawings of directed graphs on arbitrary surfaces where the upward direction is defined by a vector field. This generalizes earlier approaches using surfaces with a fixed embedding in R3 and introduces new classes of planar upward drawable graphs, where some of them even allow cycles. Our approach leads to a classifi- cation of planar upward embeddability. In particular, we show the coincidence of the classes of planar upward drawable graphs on the sphere and on the standing cylinder. These classes coincide with the classes of planar upward drawable graphs with a homogeneous field on a cylinder and with a radial field in the plane. A cyclic field in the plane introduces the new class RUP of upward drawable graphs,...