In this paper, we resolve the complexity problem of spectral graph sparcification in dynamic streams up to polylogarithmic factors. Using a linear sketch we design a streaming algorithm that uses (O) over tilde (n) space, and with high probability, recovers a spectral sparsifier from the sketch in (O) over tilde (n) time.(1) Prior results either achieved near optimal (O) over tilde (n) space, but Omega(n(2)) recovery time [Kapralov et al. '14], or ran in o(n(2)) time, but used polynomially suboptimal space [Ahn et al '13]. Our main technical contribution is a novel method for recovering graph edges with high effective resistance from a linear sketch. We show how to do so in nearly linear time by 'bucketing' vertices of the input graph into ...