In this paper we determine new upper bounds for the maximal density of translative packings of superballs in three dimensions (unit balls for the -norm) and of Platonic and Archimedean solids having tetrahedral symmetry. Thereby, we improve Zong's recent upper bound for the maximal density of translative packings of regular tetrahedra from 0.3840 . . . to 03745 . . ., getting closer to the best known lower bound of 0.3673 . . . We apply the linear programming bound of Cohn and Elkies which originally was designed for the classical problem of densest packings of round spheres. The proofs of our new upper bounds are computational and rigorous. Our main technical contribution is the use of invariant theory of pseudo-reflection groups in polyno...