Diese Arbeit konzentriert sich auf die Modellierung der statistischen Strukturen von natürlichen Bildern mit einer Klasse kausaler Modelle, die Varianten von Restricted Bolzmannn Machines (RBMs) sind. Zunächst wird die A-priori-Wahrscheinlichkeit p(Beobachtungen) mit einer gewichteten Summe von Gauß-Verteilungen durch die Varianten der RBMs modelliert. Im Anschluss werden dann die Leistungen der verschiedenen Modelle verglichen. Weiterhin haben wir synthetisch Bildausschnitte erstellt und die Statistiken mit den Statistiken natürlicher Bilder verglichen. Schließlich werden die Datenpunktstatistiken aus der A-priori-Wahrscheinlichkeit der Modelle mit der Spontanaktivität in der primären Sehrinde in Beziehung gestellt. Unsere Experimente z...
This project will consist on the theoretical and experimental analysis of Restricted Boltzmann Machi...
In recent years, sparse restricted Boltzmann machines have gained popularity as unsupervised feature...
In recent years, sparse restricted Boltzmann machines have gained popularity as unsupervised feature...
Diese Arbeit konzentriert sich auf die Modellierung der statistischen Strukturen von natürlichen Bil...
Abstract. A Gaussian-binary restricted Boltzmann machine is a widely used energy-based model for con...
We present a theoretical analysis of Gaussian-binary restricted Boltzmann machines (GRBMs) from the ...
We present a theoretical analysis of Gaussian-binary restricted Boltzmann machines (GRBMs) from the ...
This thesis considers statistical modelling of natural image data. Obtaining advances in this field ...
We explore the training and usage of the Restricted Boltzmann Machine for unsupervised feature extra...
Neural network models able to approximate and sample high-dimensional probability distributions are ...
Neural network models able to approximate and sample high-dimensional probability distributions are ...
Neural network models able to approximate and sample high-dimensional probability distributions are ...
Neural network models able to approximate and sample high-dimensional probability distributions are ...
Restricted Boltzmann machine (RBM) plays an important role in current deep learning techniques, as m...
Neural network models able to approximate and sample high-dimensional probability distributions are ...
This project will consist on the theoretical and experimental analysis of Restricted Boltzmann Machi...
In recent years, sparse restricted Boltzmann machines have gained popularity as unsupervised feature...
In recent years, sparse restricted Boltzmann machines have gained popularity as unsupervised feature...
Diese Arbeit konzentriert sich auf die Modellierung der statistischen Strukturen von natürlichen Bil...
Abstract. A Gaussian-binary restricted Boltzmann machine is a widely used energy-based model for con...
We present a theoretical analysis of Gaussian-binary restricted Boltzmann machines (GRBMs) from the ...
We present a theoretical analysis of Gaussian-binary restricted Boltzmann machines (GRBMs) from the ...
This thesis considers statistical modelling of natural image data. Obtaining advances in this field ...
We explore the training and usage of the Restricted Boltzmann Machine for unsupervised feature extra...
Neural network models able to approximate and sample high-dimensional probability distributions are ...
Neural network models able to approximate and sample high-dimensional probability distributions are ...
Neural network models able to approximate and sample high-dimensional probability distributions are ...
Neural network models able to approximate and sample high-dimensional probability distributions are ...
Restricted Boltzmann machine (RBM) plays an important role in current deep learning techniques, as m...
Neural network models able to approximate and sample high-dimensional probability distributions are ...
This project will consist on the theoretical and experimental analysis of Restricted Boltzmann Machi...
In recent years, sparse restricted Boltzmann machines have gained popularity as unsupervised feature...
In recent years, sparse restricted Boltzmann machines have gained popularity as unsupervised feature...