This thesis presents work on the development of model-based Bayesian approaches to object tracking and intent prediction. Successful navigation/positioning applications rely fundamentally on the choice of appropriate dynamic model and the design of effective tracking algorithms capable of maximising the use of the structure of the dynamic system and the information from sensors. While the tracking problem with frequent and accurate position data has been well studied, we push back the frontiers of current technology where an object can undergo fast manoeuvres and position fixes are limited. On the other hand, intent prediction techniques which extract higher level information such as the intended destination of a moving object can be design...