For a family of oscillatory Stokes layers, the spatiotemporal evolution of impulsively excited disturbances is investigated, using direct numerical simulations of the linearized Navier-Stokes equations. The semi-infinite planar Stokes layer is modified to incorporate a low-amplitude, high-frequency harmonic, which provides a simplified model of the external noise found in physical experiments. For the unmodified Stokes layer, impulsively excited disturbances are known to form family-tree-like structures, composed of multiple wave packets. The long-term behavior that is encompassed within these structures is studied, together with the effects upon them of the alterations to the base flow. In the absence of any base-flow modification, the dis...