Let S be a set of n points in the plane and let CH(S) represent the convex hull of S. The Largest Empty Circle (LEC) problem is the problem of finding the largest circle centered with CH(S) such that no point of S lies within the circle. Shamos and Hoey (SH75) outlined an algorithm for solving this problem in time O(n log n) by first computing the Voronoi diagram, V(S), in time O(n log n), then using V(S) and CH(S) to compute the largest empty circle in time O(n). In a recent paper [Tou83], Toussaint pointed out some problems with the algorithm as outlined by Shamos and presented an algorithm which, given V(S) and CH(S), solves the LEC problem in time O(n log n). In this note we show that Shamos\u27 original claim was correct: given V(S) an...