In this technical note, the set membership error-in-variables identification problem is considered, that is the identification of linear dynamic systems when both output and input measurements are corrupted by bounded noise. A new approach for the computation of parameter uncertainty intervals is presented. First, the identification problem is formulated in terms of nonconvex optimization. Then, relaxation techniques based on linear matrix inequalities are employed to evaluate parameter bounds by means of convex optimization. The inherent structured sparsity of the original identification problems is exploited to reduce the computational complexity of the relaxed problems. Finally, convergence properties and complexity of the proposed proce...