We consider a model of N two-colors urns in which the reinforcement of each urn depends also on the content of all the other urns. This interaction is of mean-field type and it is tuned by a parameter \alpha in [0,1]; in particular, for \alpha=0 the N urns behave as N independent Polya's urns. For \alpha>0 urns synchronize, in the sense that the fraction of balls of a given color converges a.s. to the same (random) limit in all urns. In this paper we study fluctuations around this synchronized regime. The scaling of these fluctuations depends on the parameter \alpha. In particular, the standard scaling t^{-1/2} appears only for \alpha>1/2. For \alpha\geq 1/2 we also determine the limit distribution of the rescaled fluctuations. We use the n...