We develop the first theory of control-flow graphs from first principles, and use it to create an algorithm for automatically synthesizing many variants of control-flow graph generators from a language's operational semantics. Our approach first introduces a new algorithm for converting a large class of small-step operational semantics to an abstract machine. It next uses a technique called "abstract rewriting" to automatically abstract the semantics of a language, which is used both to directly generate a CFG from a program ("interpreted mode") and to generate standalone code, similar to a human-written CFG generator, for any program in a language. We show how the choice of two abstraction and projection parameters allow our approach to sy...