The classical Riemann–Roch theorem for projective irreducible curves over perfect fields can be elegantly proved using adeles and their topological self-duality. This was known already to E. Artin and K. Iwasawa and can be viewed as a relation between adelic geometry and algebraic geometry in dimension one. In this paper we study geo- metric two-dimensional adelic objects, endowed with appropriate higher topology, on algebraic proper smooth irreducible surfaces over perfect fields. We establish several new results about adelic objects and prove topological self-duality of the geometric adeles and the discreteness of the function field. We apply this to give a direct proof of finite dimen- sion of adelic cohomology groups. Using an adelic Eu...