This paper is devoted to the study of the nonconservative bitemperature Euler system. We firstly introduce an underlying two species kinetic model coupled with the Poisson equation. The bitemperature Euler system is then established from this kinetic model according to an hydrodynamic limit. A dissipative entropy is proved to exist and a solution is defined to be admissible if it satisfies the related dissipation property. Next, four different numerical methods are presented. Firstly, the kinetic model gives rise to kinetic schemes for the fluid system. The second approach belongs to the family of the discrete BGK schemes introduced by Aregba-Driollet and Natalini. Finally, a quasi-linear relaxation approach and a Lagrange-remap scheme are ...