We propose a simple but general bootstrap method for estimating the Prediction Mean Square Error (PMSE) of the state vector predictors when the unknown model parameters are estimated from the observed series. As is well known, substituting the model parameters by the sample estimates in the theoretical PMSE expression that assumes known parameter values results in under-estimation of the true PMSE. Methods proposed in the literature to deal with this problem in state-space modelling are inadequate and may not even be operational when fitting complex models, or when some of the parameters are close to their boundary values. The proposed method consists of generating a large number of series from the model fitted to the original observations,...