We develop the perturbation theory of the fidelity susceptibility in biorthogonal bases for arbitrary interacting non-Hermitian many-body systems with real eigenvalues. The quantum criticality in the non-Hermitian transverse field Ising chain is investigated by the second derivative of ground-state energy and the ground-state fidelity susceptibility. We show that the system undergoes a second-order phase transition with the Ising universal class by numerically computing the critical points and the critical exponents from the finite-size scaling theory. Interestingly, our results indicate that the biorthogonal quantum phase transitions are described by the biorthogonal fidelity susceptibility instead of the conventional fidelity susceptibili...
Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescen...
A crowd of nonequilibrium entities can show phase transition behaviors that are prohibited in conven...
We derive an exact closed-form expression for fidelity susceptibility of even- and odd-sized quantum...
We show that non-Hermitian biorthogonal many-body phase transitions can be characterized by the enha...
By using biorthogonal bases, we construct a complete framework for biorthogonal dynamical quantum ph...
The biorthogonal formalism extends conventional quantum mechanics to the non-Hermitian realm. It has...
Motivated by recent work on the non-Hermitian skin effect in the bosonic Kitaev-Majorana model, we s...
Inspired by current research on measurement-induced quantum phase transitions, we analyze the nonuni...
We put forward a phenomenological theory for entanglement dynamics in monitored quantum many-body sy...
The local density of states or its Fourier transform, usually called fidelity amplitude, are importa...
We analyze the scaling behavior of the fidelity, and the corresponding susceptibility, emerging in f...
Motivated by the increasing research interests in the role of the fidelity in quantum critical pheno...
We study unitary evolution of bipartite entanglement in a circuit with nearest-neighbor random gates...
Quantum coherence will undoubtedly play a fundamental role in understanding the dynamics of quantum ...
We demonstrate three types of transformations that establish connections between Hermitian and non-H...
Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescen...
A crowd of nonequilibrium entities can show phase transition behaviors that are prohibited in conven...
We derive an exact closed-form expression for fidelity susceptibility of even- and odd-sized quantum...
We show that non-Hermitian biorthogonal many-body phase transitions can be characterized by the enha...
By using biorthogonal bases, we construct a complete framework for biorthogonal dynamical quantum ph...
The biorthogonal formalism extends conventional quantum mechanics to the non-Hermitian realm. It has...
Motivated by recent work on the non-Hermitian skin effect in the bosonic Kitaev-Majorana model, we s...
Inspired by current research on measurement-induced quantum phase transitions, we analyze the nonuni...
We put forward a phenomenological theory for entanglement dynamics in monitored quantum many-body sy...
The local density of states or its Fourier transform, usually called fidelity amplitude, are importa...
We analyze the scaling behavior of the fidelity, and the corresponding susceptibility, emerging in f...
Motivated by the increasing research interests in the role of the fidelity in quantum critical pheno...
We study unitary evolution of bipartite entanglement in a circuit with nearest-neighbor random gates...
Quantum coherence will undoubtedly play a fundamental role in understanding the dynamics of quantum ...
We demonstrate three types of transformations that establish connections between Hermitian and non-H...
Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescen...
A crowd of nonequilibrium entities can show phase transition behaviors that are prohibited in conven...
We derive an exact closed-form expression for fidelity susceptibility of even- and odd-sized quantum...