This paper contains two parts. In the first part, we study the ergodicity of periodic measures of random dynamical systems on a separable Banach space. We obtain that the periodic measure of the continuous time skew-product dynamical system generated by a random periodic path is ergodic if and only if the underlying noise metric dynamical system at discrete time of integral multiples of the period is ergodic. For the Markov random dynamical system case, we prove that the periodic measure of a Markov semigroup is PS-ergodic if and only if the trace of the random periodic path at integral multiples of period either entirely lies on a Poincaré section or completely outside a Poincaré section almost surely. In the second part of this paper, we ...