Reducing the number of edge crossings is considered one of the most important graph drawing aesthetics. While real-world graphs tend to be large and dense, most of the earlier work on evaluating the impact of edge crossings utilizes relatively small graphs that are manually generated and manipulated. We study the effect on task performance of increased edge crossings in automatically generated layouts for graphs, from different datasets, with different sizes, and with different densities. The results indicate that increasing the number of crossings negatively impacts accuracy and performance time and that impact is significant for small graphs but not significant for large graphs. We also quantitatively evaluate the impact of edge crossings...