Feature selection plays an important role in classification systems. Using classifier error rate as the evaluation function, feature selection is integrated with incremental training. A neural network classifier is implemented with an incremental training approach to detect and discard irrelevant features. By learning attributes one after another, our classifier can find out directly the attributes that make no contribution to classification. These attributes are marked and considered for removal. Incorporated with an FLD feature ranking scheme, three batch removal methods based on classifier error rate have been developed to discard irrelevant features. These feature selection methods reduce the computational complexity involved in searchi...